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Basics and Preliminaries

Given a nonempty set G equipped with a map · : G×G→ G that sends (g, h) 7→ g · h, we say that

the pair (G, ·) is a group whenever the following properties hold for G.

(i.) The map · is associative, i.e., we have that g · (h · k) = (g · h) · k for any g, h, and k in G.

(ii.) There exists an element eG of G such that eG · g = g = g · eG for all elements g of G.

(iii.) Given an element g in G, there exists an element g−1 in G such that g · g−1 = eG = g−1 · g.

One can show that the element eG is unique and that for each element g of G, the element g−1 is

unique, hence we refer to the element eG of property (ii.) as the identity element of G, and we

refer to the element g−1 of property (iii.) as the inverse of g.

Usually, we will omit the operation · of G and simply use concatenation, e.g., g · h def
= gh. Given

a nonempty set H ⊆ G, we say that H is a subgroup of G whenever H is a group with respect to

the operation of G. Often, it is convenient to use the following proposition and its corollary.

Proposition 1. Given a group G and a nonempty set H ⊆ G such that gh−1 is in H for all elements

g, h in H, we have that (H, ·) is a subgroup of G.

Corollary 1. Given a group G and a nonempty set H ⊆ G such that H is closed under the

operation of G and closed under taking inverses, we have that H is a subgroup of G.

We refer to the cardinality |G| of a group as its order. Under suitable conditions, the set

G

H
= {gH | g ∈ G}

of left cosets of H in G is a group (called the quotient group) with respect to the operation · of

G. Explicitly, G/H is a group if and only if ghg−1 is in H for all g in G and h in H. Equivalently,

G/H is a group if and only if the map G×H → G that sends (g, h) 7→ ghg−1 restricts to a binary

operation on H if and only if H is closed under conjugation by elements of G. Given that this holds,

we say that H is a normal subgroup of G, and we write H E G. One can show that the integer

[G : H]
def
= |G/H| is well-defined in this case. Quite generally, the integer [G : H] gives the number

of distinct left (or right) cosets of H in G. We refer to [G : H] as the index of H in G.

Theorem 1. (Lagrange’s Theorem) Given a group G and any subgroup H of G, we have that

|G| = [G : H]|H|. Put another way, the order of any subgroup H of G must divide the order of G.
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Proof. We establish first that aH ∼ bH if and only if ab−1 ∈ H is an equivalence relation on the

left cosets of H in G. By assumption that H is a subgroup of G, we have that eG = aa−1 is in H

so that aH ∼ aH. Given that aH ∼ bH, we have that ab−1 is in H, from which it follows that

ba−1 = (ab−1)−1 is in H so that bH ∼ aH. Last, if we have that aH ∼ bH and bH ∼ cH, then ab−1

and bc−1 are both in H so that ac−1 = (ab−1)(bc−1) is in H, i.e., we have that aH ∼ cH.

We claim now that each left coset of H in G has cardinality |H|. Consider the map fg : H → gH

defined by fg(h) = gh. Certainly, this map is surjective. Given that fg(h) = fg(h
′), we have that

gh = gh′, from which it follows that h = h′ by the cancellative property of G. We conclude that fg
is a bijection for each element g in G, hence we have that |H| = |gH| for all elements g in G.

Consequently, we may partition G as G = ∪ni=1giH, where the elements g1, . . . , gn each belong

to a distinct left coset of H in G. Considering that n = [G : H] by definition and |giH| = |H| for

each integer 1 ≤ i ≤ n by the paragraph above, we conclude that G = [G : H]|H|.

Q1, August 2013. Consider a group G with subgroups H and K. Consider the set

HK = {hk |h ∈ H, k ∈ K}.

(a.) Prove that HK is a subgroup of G if and only if HK = KH. Conclude that if either H or K

is a normal subgroup of G, then HK is a subgroup of G.

(b.) Prove that if H and K are finite, then |HK| = |H||K|
|H∩K| .

Given groups (G, ·) and (H, ?), a map ϕ : G→ H is a group homomorphism whenever

ϕ(g · h) = ϕ(g) ? ϕ(h)

for all elements g, h in G. Put another way, the map ϕ respects the operations of both G and H.

We refer to the set kerϕ = {g ∈ G |ϕ(g) = eH} as the kernel of ϕ.

Proposition 2. Given a group homomorphism ϕ : G→ H, we have that

(i.) ϕ(eG) = eH and

(ii.) ϕ(g−1) = [ϕ(g)]−1 for all elements g in G.

Proposition 3. Given a group homomorphism ϕ : G→ H, we have that ϕ is injective (or one-to-

one) if and only the kernel of ϕ is trivial, i.e., kerϕ = {eG}.

Proof. We will assume first that ϕ is injective. Given an element g in kerϕ, by Proposition 2, we

have that ϕ(g) = eH = ϕ(eG) so that g = eG by the injectivity of ϕ.

Conversely, we will assume that kerϕ is trivial. Given any elements g and h in G such that

ϕ(g) = ϕ(g′), by Proposition 2, we have that eH = ϕ(g)[ϕ(h)]−1 = ϕ(g)ϕ(h−1) = ϕ(gh−1). By

hypothesis that kerϕ is trivial, it follows that gh−1 = eG so that g = h, as desired.

Q1, January 2015. Given a finite group G of odd order such that gh = hg for all g, h ∈ G, prove

that for each element x ∈ G, there exists a unique element y ∈ G such that y2 = x.

One of the most important facts about any algebraic structure is the following.
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Theorem 2. (First Isomorphism Theorem) Given any groups (G, ·) and (H, ?) and a group homo-

morphism ϕ : G→ H, there exists a group isomorphism ψ : G/ kerϕ→ ϕ(G).

Proof. We must first demonstrate that ϕ(G) is a subgroup of H and that kerϕ is a normal subgroup

of G. We leave this to the reader. Once this is accomplished, we may view G/ kerϕ as a group with

respect to the operation · of G, hence it suffices to find a group isomorphism ψ : G/ kerϕ→ ϕ(G).

Consider the map ψ : G/ kerϕ → ϕ(G) defined by ψ(g · kerϕ) = ϕ(g). We must establish that

ψ is well-defined, i.e., we must show that if g · kerϕ = h · kerϕ, then ψ(g · kerϕ) = ψ(h · kerϕ).

By definition, we have that g · kerϕ = h · kerϕ if and only if h−1g · kerϕ = eG · kerϕ if and only

if h−1g is in kerϕ if and only if ϕ(h−1g) = eH if and only if ϕ(h−1) ? ϕ(g) = eH if and only if

[ϕ(h)]−1 ?ϕ(g) = eH if and only if ϕ(g) = ϕ(h) if and only if ψ(g ·kerϕ) = ψ(h ·kerϕ). We conclude

that ψ is well-defined. By hypothesis that ϕ is a group homomorphism, it follows that ψ is a group

homomorphism, and ψ is clearly surjective, hence it suffices to show that ψ is injective. Observe

that g · kerϕ is in kerψ if and only if ϕ(g) = ψ(g · kerϕ) = eH if and only if g is in kerϕ if and only

if g · kerϕ = eG · kerϕ implies that kerψ is trivial so that ψ is injective, as desired.

Theorem 3. (Second Isomorphism Theorem) Given a group G with a subgroup H and a normal

subgroup N, we have that HN/N ∼= H/(H ∩N).

Proof. We must first demonstrate that HN is a subgroup of G such that N E HN and that H ∩N
is a subgroup of H. We leave these details to the reader. Once this is accomplished, it suffices by

the First Isomorphism Theorem to find a surjective group homomorphism ϕ : H → HN/N such

that kerϕ = H ∩N. We leave it to the reader to verify that the map ϕ(h) = hN does the job.

Theorem 4. (Third Isomorphism Theorem) Given a group G with normal subgroups N and H

such that N ⊆ H, we have that (G/N)/(H/N) ∼= G/H.

Proof. We must first demonstrate that N is a normal subgroup of H and that H/N is a subgroup

of G/N. We leave these details to the reader. Once this is accomplished, it suffices by the First

Isomorphism Theorem to find a surjective group homomorphism ϕ : G/N → G/H such that kerϕ =

H/N. We leave it to the reader to verify that the map ϕ(gN) = gH does the job. Considering that

this map is defined on a quotient group, we must also establish that this map is well-defined.

Theorem 5. (Fourth Isomorphism Theorem) Given a group G with a normal subgroup N, there

exists a one-to-one correspondence {subgroups of G that contain N} ↔ {subgroups of G/N} that

sends H 7→ H/N for a subgroup H of G that contains N with the following properties.

1.) Given any subgroups H and K of G such that N ⊆ H and N ⊆ K, we have that H ⊆ K if

and only if H/N ⊆ K/N. Put another way, this bijection is inclusion-preserving.

2.) Given any subgroups H and K of G such that N ⊆ H ⊆ K, we have that

[K : H] = [K/N : H/N ].

3.) Given any subgroups H and K of G such that N ⊆ H and N ⊆ K, we have that

(H ∩K)/N = (H/N) ∩ (K/N).
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4.) Given any subgroup H of G such that N ⊆ H, we have that H E G if and only if H/N E G/N.

We say that a group is abelian whenever gh = hg for all elements g and h of G. Unfortunately,

there exist groups that are not abelian, hence we define the center of G

Z(G) = {g ∈ G | gh = hg for all h ∈ G}

to be the set of all elements that commute with everything in G. Of course, any element g of G

commutes with any power gk of g, hence the subgroup 〈g〉 = {gk | k is an integer} is an abelian

subgroup of any group G. We refer to the subgroup 〈g〉 as the cyclic subgroup generated by g.

Conversely, if there exists an element g of G such that G = 〈g〉, we say that G is cyclic.

Proposition 4. Given a cyclic group G with infinite order, we have that G ∼= (Z,+). Given a

cyclic group G with order n, we have that G ∼= (Z/nZ,+). Put another way, the unique (up to

isomorphism) infinite cyclic group is Z, and the unique cyclic group of order n is Z/nZ.

Proof. Use the First Isomorphism Theorem. We leave the details to the reader.

Once we have established an isomorphism between two algebraic structures, we may use known

properties about one of the objects to derive information about the other object.

Corollary 2. Given a cyclic group G with infinite order, prove that there exist no proper non-trivial

cyclic subgroups of G, i.e., the only proper cyclic subgroup of G is {eG}. Given a cyclic group G

with order n, prove that for each integer d |n, there exists a cyclic subgroup of G of order d.

Proposition 5. Given a group G such that G/Z(G) is cyclic, we have that G is abelian.

Proof. We will assume that G/Z(G) is cyclic with generator gZ(G). Given any two elements h and

k of G, we have that hZ(G) = [gZ(G)]m = gmZ(G) and kZ(G) = [gZ(G)]n = gnZ(G) so that g−mh

is in Z(G) and g−nk is in Z(G). Consequently, there exist some elements z1 and z2 of Z(G) such

that g−mh = z1 and g−nk = z2. By definition of Z(G), we conclude as desired that

hk = (gmz1)(g
nz2) = gmgnz1z2 = gngmz2z1 = (gnz2)(g

mz1) = kh.

Q1, January 2014. Given a finite group G, recall that the centralizer of x ∈ G is the set

ZG(x) = {g ∈ G | gx = xg}.

(a.) Prove that ZG(x) is a subgroup of G such that [G : ZG(x)] is the number of elements of G

conjugate to x.

(b.) Given that the order of G is odd, prove that x and x−1 are not conjugate unless x = eG.
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Group Actions

Consider a group (G, ·) and a nonempty set X. We say that a map ∗ : G × X → X that sends

(g, x) 7→ g ∗ x is a group action whenever the map ∗ obeys the properties

(i.) g ∗ (h ∗ x) = (g · h) ∗ x for all g, h in G and x in X and

(ii.) eG ∗ x = x for all x in X.

One could also say that G acts on X by ∗. We define the kernel of a group action by

K∗
def
= {g ∈ G | g ∗ x = x for all x ∈ X}.

On the other hand, we define the stabilizer of an element x in X by

StabG(x) = {g ∈ G | g ∗ x = x},

from which it follows that K∗ = ∩x∈X StabG(x). We say that a group action is faithful whenever

its kernel K∗ is trivial, i.e., whenever we have that K∗ = {eG}. We will also consider the set

FixG(X) = {x ∈ X | g ∗ x = x for all g ∈ G}.

Proposition 6. Given a group G acting on a nonempty set X by ∗, prove that K∗ E G.

Proof. Use the one-step subgroup test of Proposition 1; then, prove that for any element x in X, g

in G, and k in K∗, we have that gkg−1 ∗ x = x. We leave the details to the reader.

Theorem 6. (The Orbit-Stabilizer Theorem) Given a group G acting on a nonempty set X, the

relation x ∼ y if and only if y = g∗x for some element g of G is an equivalence relation. We denote by

O(x) = {g∗x | g ∈ G}. Further, the number of elements in the equivalence class of any element x inX

is the index of the stabilizer of x in G, i.e., we have that |O(x)| = #{g ∗x | g ∈ G} = [G : StabG(x)].

Proof. We must first demonstrate that ∼ is (1.) reflexive, (2.) symmetric, and (3.) transitive. We

leave these details to the reader. Once this is established, we may denote by O(x) = {g ∗x | g ∈ G}
the equivalence class of x under ∼ . We refer to this as the orbit of x. Consider the map

O(x)→ G/ StabG(x)

y = g ∗ x 7→ g StabG(x)

from the equivalence class of x modulo ∼ to the left cosets of StabG(x) in G. We claim that this

map is a bijection, hence we have that #{g ∗ x | g ∈ G} = |O(x)| = [G : StabG(x)].

Certainly, the map is surjective. On the other hand, we have that g StabG(x) = h StabG(x) if

and only if h−1g StabG(x) = eG StabG(x) if and only if h−1g is in StabG(x) if and only if h−1g∗x = x

if and only if h∗ (h−1g ∗x) = h∗x if and only if hh−1 ∗ (g ∗x) = h∗x if and only if eG ∗ (g ∗x) = h∗x
if and only if g ∗ x = h ∗ x, from which it follows that the map is injective, as desired.

We say that a group action is transitive whenever there is only one orbit, i.e., for any two elements

x and y of X, there exists an element g of G such that y = g ∗ x.

Corollary 3. If G is a finite group acting on a nonempty set X, then |G| = |O(x)| · |StabG(x)|.
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The Class Equation

Given a group G, the conjugation map G×G→ G that sends (g, h) 7→ ghg−1 defines a group action

of G on itself. One can easily verify that

(i.) eG ∗ g = eGge
−1
G = g for all g in G and

(ii.) k ∗ (h ∗ g) = k ∗ (hgh−1) = khgh−1k−1 = khg(kh)−1 = kh ∗ g for all elements g, h, k in G.

We say that two elements g and h of G are conjugate in G if and only if there exists an element

k of G such that h = kgk−1 = k ∗ g. Consequently, two elements of G are conjugate in G precisely

when they are in the same orbit of G acting on itself by conjugation. Observe that

StabG(g) = {h ∈ G |h ∗ g = g} = {h ∈ G |hgh−1 = g} = {h ∈ G |hg = gh}

is the set of elements of G that commute with g. We refer to this set as the centralizer of g in G,

and we denote it by ZG(g). Consequently, we may identify the stabilizer of g under the action of

conjugation with the centralizer of g in G. By the Orbit-Stabilizer Theorem, it follows that

|O(x)| = [G : StabG(x)] = [G : ZG(g)].

Considering that O(g) = {h ∗ g |h ∈ G} = {hgh−1 |h ∈ G}, it follows that O(g) is the conjugacy

class of g in G, and the above displayed equation says that the number of elements conjugate to g

in G is precisely the index of the centralizer of g in G. We conclude the following.

Theorem 7. (The Class Equation) Given a finite group G with center Z(G) and representatives

g1, . . . , gn of the distinct conjugacy classes of G not contained in the center Z(G), we have that

|G| = |Z(G)|+
n∑

i=1

[G : ZG(gi)].

Proof. Considering that G acts on itself by conjugation, it follows by the Orbit-Stabilizer Theorem

that the equivalence relation x ∼ y if and only if y = gxg−1 for some element g of G partitions G:

G =
⋃
g∈G

O(g) = O(z1) ∪ · · · ∪ O(zk) ∪ O(g1) ∪ · · · ∪ O(gn),

where the zi are elements of the center Z(G) and the gj are representatives of the distinct conjugacy

classes of G not contained in the center. Consequently, we have that

|G| =
k∑

i=1

|O(zi)|+
n∑

j=1

|O(gj)| =
k∑

i=1

1 +
n∑

j=1

[G : StabG(gj)] = |Z(G)|+
n∑

i=1

[G : ZG(gi)].

Of course, the Class Equation follows from a more general fact about group actions.

Theorem 8. (The Class Equation of a Group Action) Consider a group G that acts on a finite

set X via ∗. Consider the set FixG(X) = {x ∈ X | g ∗ x = x for all g ∈ G}, and let x1, . . . , xn be

representatives for the distinct cosets G/ StabG(xi) not contained in FixG(X). We have that

|X| = |FixG(X)|+
n∑

i=1

[G : StabG(xi)].
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Once we have the Class Equation (and the more general version) at our disposal, we can tackle

many more of the group theory questions from previous qualifying exams in algebra.

Q4, August 2019. Consider a group G. We say that x, y ∈ G are conjugate whenever y = gxg−1

for some element g ∈ G. Conjugacy forms an equivalence relation with equivalence classes

[x] = {gxg−1 | g ∈ G}.

(a.) Prove that [x] is a singleton if and only if x ∈ Z(G), the center of G.

(b.) Prove that #[x] = [G : ZG(x)], where ZG(x) = {g ∈ G | gx = xg} is the centralizer of x.

(c.) Given a finite group G of odd order and a subgroup N E G of order 3, prove that N ≤ Z(G).

Q1, January 2017. Consider a finite group G of order pn with p prime.

(a.) Prove that Z(G) is non-trivial.

(b.) Prove that if N ≤ G is a normal subgroup of order p, then N ≤ Z(G).

Q1, August 2015. Given a group G, denote the center of G by Z(G), and note that the center of

G is a normal subgroup of G. Construct subgroups Zi(G) inductively as follows.

1.) Begin with Z0(G) = {eG}.

2.) For each integer i ≥ 0, let Zi+1(G) be the subgroup of G that is the pre-image of the center

of the group G/Zi(G) so that Zi+1(G)/Zi(G) is the center of G/Zi(G).

We note that G is nilpotent if Zn(G) = G for some integer n ≥ 1.

(a.) Prove that Zi(G) is a normal subgroup of G for each i.

(b.) Prove that if |G| = pr with p prime, then G is nilpotent.

Q2, January 2014. Consider a group G with a subgroup H such that [G : H] = n. Prove that

there exists a normal subgroup K of G such that K ⊆ H and [G : K] ≤ n!.

Give them a shot; if you need a hint or to check your solutions, see the proofs provided below.
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Proofs and Solutions

Q1, August 2013. Consider a group G with subgroups H and K. Consider the set

HK = {hk |h ∈ H, k ∈ K}.

(a.) Prove that HK is a subgroup of G if and only if HK = KH. Conclude that if either H or K

is a normal subgroup of G, then HK is a subgroup of G.

(b.) Prove that if H and K are finite, then |HK| = |H||K|
|H∩K| .

Proof. (a.) We will assume first that HK = KH. We have therefore that for each h1k1 ∈ HK, there

exists a k2h2 ∈ KH such that h1k1 = k2h2, and vice-versa. Given any elements h1k1, h2k2 ∈ HK, we

claim that h1k1k
−1
2 h−12 = (h1k1)(h2k2)

−1 ∈ HK. We have that h1k1k
−1
2 ∈ HK so that by hypothesis

h1k1k
−1
2 = k3h3 for some k3h3 ∈ KH. We have therefore that h1k1k

−1
2 h−12 = k3h3h

−1
2 . Likewise, we

have that k3h3h
−1
2 ∈ KH so that by hypothesis k3h3h

−1
2 = h4k4. We conclude that HK ≤ G.

We will assume now that HK ≤ G. Given any element hk ∈ HK, we have that h−1k−1 is in HK.

Considering that hkh−1k−1 is in HK by hypothesis that HK ≤ G, we find that hkh−1k−1 = h1k1 so

that h−11 hk = k1kh. We claim that the map `h−1
1

: H → H defined by `h−1
1

(h) = h−11 h is surjective,

from which it follows that HK ⊆ KH. Of course, this is the case because h = h−11 (h1h) = `h−1
1

(h1h).

Conversely, given any element kh ∈ KH, we have that h = heG ∈ HK and k = eGk ∈ HK so that

kh = (eGk)(heG) ∈ HK by assumption that HK ≤ G. We conclude that HK = KH.

We note that if H E G, then gHg−1 ⊆ H (or equivalently gHg−1 = H) for every g in G by

definition. Particularly, we have that kHk−1 = H for every k in K so that kH = Hk for every k

in K, i.e., HK = KH. Likewise, a similar result follows if K E G. By the exposition we have given

above, we conclude that if either H or K is normal in G, then HK is a subgroup of G.

Proof. (b.) Considering that H is finite, we may write H = {h1, . . . , hn}. Observe that an element

of HK is of the form hik for some k ∈ K, hence HK = ∪ni=1hiK is the union of left cosets of K

in HK. We claim that there are |H|
|H∩K| distinct left cosets of K in HK. Observe that hiK = hjK

if and only if h−1j hiK = K if and only if h−1j hi ∈ K if and only if h−1j hi ∈ H ∩ K if and only if

hi(H ∩K) = hj(H ∩K), hence the distinct left cosets of K in HK are in bijection with the distinct

left cosets of H ∩K in H. By Lagrange’s Theorem, we have that [HK : K] = [H : H ∩K] = |H|
|H∩K| .

Considering that each left coset of K in HK has |K| elements, we conclude that |HK| = |H||K|
|H∩K| .

Q1, January 2015. Given a finite abelian group G of odd order, prove that for each element

x ∈ G, there exists a unique element y ∈ G such that y2 = x.

Proof. Consider the map ϕ : G → G defined by ϕ(g) = g2. By hypothesis that G is abelian, we

have ϕ(gh) = (gh)2 = ghgh = gghh = g2h2 = ϕ(g)ϕ(h) so that ϕ is a group homomorphism with

kerϕ = {g ∈ G |ϕ(g) = eG} = {g ∈ G | g2 = eG}.

We note that the order of each element of G divides the order of G, hence there are no elements of

order 2 in G. We conclude that kerϕ = {eG}. Of course, any injective map from a finite set into

itself must also be surjective, hence we have that ϕ(G) = G, i.e., for each element x ∈ G, there

exists an element y ∈ G such that y2 = x. Consider an element z ∈ G such that z2 = x. We have

that ϕ(y) = ϕ(z), from which it follows that y = z by the injectivity of ϕ, so y is unique.
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Q1, January 2014. Given a finite group G, recall that the centralizer of x ∈ G is the set

ZG(x) = {g ∈ G | gx = xg}.

(a.) Prove that ZG(x) is a subgroup of G such that [G : ZG(x)] is the number of elements of G

conjugate to x.

(b.) Given that the order of G is odd, prove that x and x−1 are not conjugate unless x = eG.

Proof. (a.) Certainly, we have that eG is in ZG(x) so that ZG(x) is nonempty. Consider the elements

g and h in ZG(x). We claim that gh−1 ∈ ZG(x). We have that xgh−1 = gxh−1 since gx = xg and

x = h−1xh since hx = xh, from which it follows that xgh−1 = gxh−1 = g(h−1xh)h−1 = gh−1x. We

conclude therefore that ZG(x) is a subgroup of G. We note that [G : ZG(x)] is the number of left

(or right) cosets of ZG(x) in G. Given that G = {g1, . . . , gn}, the left cosets of ZG(x) in G are

g1ZG(x), . . . , gnZG(x).

We note that two left cosets gjZG(x) and gkZG(x) are equal if and only if g−1k gj ∈ ZG(x) if and only

if g−1k gjx = xg−1k gj if and only if gjxg
−1
j = gkxg

−1
k are in the same conjugacy class. We conclude as

desired that [G : ZG(x)] is the number of elements of G conjugate to x.

Proof. (b.) We will assume that |G| is odd. By Lagrange’s Theorem, we have that [G : ZG(x)]

divides |G| for each element x ∈ G, from which it follows that [G : ZG(x)] is odd for each x ∈ G.
On the contrary, let us assume that x is a non-identity element such that x and x−1 are conjugate.

We claim that x 6= x−1. On the contrary, if x = x−1, then we have that x2 = eG, from which it

follows that |G| is even — a contradiction. We conclude therefore that x 6= x−1. Considering that

[G : ZG(x)] is odd, there exists a non-identity element y conjugate to x so that y 6= x, y 6= x−1, and

y 6= y−1. We have that gxg−1 = y for some g ∈ G so that g−1x−1g = y−1, hence y−1 is conjugate to

x−1. Conjugation is an equivalence relation, so we have that y−1 is conjugate to x. We have therefore

that y and y−1 are conjugate, from which it follows that [G : ZG(x)] is even — a contradiction. We

conclude therefore that no non-identity element x is conjugate to its inverse x−1.

Q4, August 2019. Consider a group G. We say that x, y ∈ G are conjugate whenever y = gxg−1

for some element g ∈ G. Conjugacy forms an equivalence relation with equivalence classes

[x] = {gxg−1 | g ∈ G}.

(a.) Prove that [x] is a singleton if and only if x ∈ Z(G), the center of G.

(b.) Prove that #[x] = [G : ZG(x)], where ZG(x) = {g ∈ G | gx = xg} is the centralizer of x.

(c.) Given a finite group G of odd order and a subgroup N E G of order 3, prove that N ≤ Z(G).

Proof. (a.) Observe that [x] = {gxg−1 | g ∈ G} is a singleton if and only if gxg−1 = hxh−1 for

all g, h ∈ G if and only if h−1gx = xh−1g for all h, g ∈ G. We have already seen that the map

`h−1 : G → G defined by `h−1(g) = h−1g is surjective, hence we conclude that [x] is a singleton if

and only if x commutes with every element of G if and only if x ∈ Z(G) by definition.
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Proof. (b.) We have already established this (cf. Proposition 3 or (1a.) from January 2014).

Proof. (c.) Considering that N is a subgroup of G of order 3, it follows that N = {eG, n, n2} for

some element n of N of order 3. By hypothesis that N is normal in G, we have that gNg−1 ⊆ N

for all elements g in G, hence G acts on N by conjugation. Using the Class Equation for Group

Actions with X = N under the action of conjugation, we have that

3 = |N | = |FixG(N)|+
k∑

i=1

[G : ZG(gi)]

for some representatives g1, . . . , gk of the distinct conjugacy classes of G not contained in FixG(N).

On the contrary, we will assume that N 6≤ Z(G) hence either n or n2 is not in Z(G).

(i.) Given that n is not in Z(G), it follows that n is not in FixG(N). Consequently, we have that

|O(n)| = [G : ZG(gi)] ≥ 2. On the other hand, we must have that [G : ZG(gi)] ≤ 2 by the

Class Equation, hence we have that [G : ZG(gi)] = 2. By Lagrange’s Theorem, we have that

[G : ZG(gi)] divides the order of G, and the order of G is odd by assumption — a contradiction.

(ii.) Given that n2 is not in Z(G), it follows that n is not in Z(G). Contrapositively, if n is in Z(G),

then gng−1 = n for all g in G, hence we have that gn2g−1 = gnng−1 = ngng−1 = n2gg−1 = n2

for all g in G so that n2 is in Z(G). We are therefore done by the paragraph above.

We conclude therefore that both n and n2 are in Z(G) so that N ≤ Z(G).

Q1, January 2017. Consider a finite group G of order pn with p prime.

(a.) Prove that Z(G) is non-trivial.

(b.) Prove that if N ≤ G is a normal subgroup of order p, then N ≤ Z(G).

Proof. (a.) Consider the Class Equation

pn = |G| = |Z(G)|+
r∑

i=1

[G : ZG(gi)],

where g1, . . . , gr are the representatives of the distinct conjugacy classes of G not contained in the

center Z(G) of G and ZG(gi) is the centralizer of gi in G. By definition of ZG(gi), we have that

ZG(gi) 6= G for each integer 1 ≤ i ≤ r. By Lagrange’s Theorem, we have that [G : ZG(gi)] divides

|G| = pn, hence we have that [G : ZG(gi)] = pm for some integer 1 ≤ m ≤ n. By rearranging the

Class Equation, we have that |Z(G)| = pn −
∑r

i=1[G : ZG(gi)]. Considering that both quantities on

the right are divisible by p, we conclude that |Z(G)| is divisible by p, hence Z(G) is non-trivial.

Proof. (b.) Considering that N is a normal subgroup of order p, we note that G acts on N by

conjugation. Consider the Class Equation for Group Action with X = N. We have that

p = |N | = |FixG(N)|+
s∑

i=1

[G : ZG(gi)],

10



where g1, . . . , gs are the representatives of the distinct conjugacy classes of G not contained in the

center FixG(N) and ZG(gi) is the centralizer of gi in G. We claim that each term in the sum has

size one so that for each n ∈ N, we have that g−1i ngi = n, from which it follows that N ≤ Z(G). By

definition of ZG(gi), we have that ZG(gi) 6= G for each integer 1 ≤ i ≤ s. By Lagrange’s Theorem,

we have that [G : ZG(gi)] divides |G| = pn, hence we have that [G : ZG(gi)] = pm for some integer

1 ≤ m ≤ n. Considering that |N | = p, if this were possible, we would have a contradiction. We

conclude that each term in the class equation has size one so that N ≤ Z(G).

Q1, August 2015. Given a group G, denote the center of G by Z(G), and note that the center of

G is a normal subgroup of G. Construct subgroups Zi(G) inductively as follows.

1.) Begin with Z0(G) = {eG}.

2.) For each integer i ≥ 0, let Zi+1(G) be the subgroup of G that is the pre-image of the center

of the group G/Zi(G) so that Zi+1(G)/Zi(G) is the center of G/Zi(G).

We note that G is nilpotent if Zn(G) = G for some integer n ≥ 1.

(a.) Prove that Zi(G) is a normal subgroup of G for each i.

(b.) Prove that if |G| = pr with p prime, then G is nilpotent.

Proof. (a.) Consider the action of G on G/Zi(G) by conjugation with kernel K. We have that

K = {g ∈ G | g · hZi(G) = hZi(G) for every coset hZi(G)}

= {g ∈ G | g(hZi(G))g−1 = hZi(G) for every coset hZi(G)}

= {g ∈ G | g(hZi(G)) = (hZi(G))g for every coset hZi(G)}

= pre-image of the center of the group G/Zi(G) = Zi+1(G).

Considering that the kernel of a group action is always a normal subgroup, we conclude that Zi(G)

is a normal subgroup of G for each i ≥ 1. Certainly, Z0(G) = {eG} is also a normal subgroup.

Proof. (b.) Given that |G| = pr with p prime, the order of each subgroup Zi(G) of G is pki for some

positive integer 0 ≤ ki ≤ r so that the order of G/Zi(G) is pr−ki . Considering that Zi(G) ⊆ Zi+1(G),

we have that pki ≤ pki+1 . Given that pki = pki+1 for any integer i ≥ 0, we have that Zi(G) = Zi+1(G)

so that Zi+1(G)/Zi(G) is trivial. By the Class Equation, a nontrivial group of prime power order

cannot have a trivial center. Considering that G/Zi(G) has order pr−ki , we must have that r−ki = 0

so that Zi(G) = G. Consequently, we may assume that pki is a strictly increasing sequence, hence

the sequence pr−ki is a strictly decreasing, from which it follows that pr−kn = 0 for some integer

n� 0. Either way, we conclude that Zn(G) = G for some integer n ≥ 0, so G is nilpotent.
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